Chapter 8

Parallel Recursion

8.1 Parallelism and Recursion

Many important synchronous parallel algorithms—Fast Fourier Transform, rout-
ing and permutation, Batcher sorting schemes, solving tridiagonal linear systems
by odd-even reduction, prefix-sum algorithms—are conveniently formulated in a
recursive fashion. The network structures on which parallel algorithms are typ-
ically implemented—butterfly, sorting networks, hypercube, complete binary
tree—are, also, recursive in nature. However, parallel recursive algorithms are
typically described iteratively, one parallel step at a time'. Similarly, the con-
nection structures are often explained pictorially, by displaying the connections
between one “level” and the next. The mathematical properties of the algo-
rithms and connection structures are rarely evident from these descriptions.

A data structure, powerlist, is proposed in this paper that highlights the role
of both parallelism and recursion. Many of the known parallel algorithms—
FFT, Batcher Merge, prefix sum, embedding arrays in hypercubes, etc.—have
surprisingly concise descriptions using powerlists. Simple algebraic properties of
powerlists permit us to deduce properties of these algorithms employing struc-
tural induction.

8.2 Powerlist

The basic data structure on which recursion is employed (in LISP[37] or ML[38])
is a list. A list is either empty or it is constructed by concatenating an element
to a list. (We restrict ourselves to finite lists throughout this paper.) We call
such a list linear (because the list length grows by 1 as a result of applying
the basic constructor). Such a list structure seems unsuitable for expressing
parallel algorithms succinctly; an algorithm that processes the list elements has
to describe how successive elements of the list are processed.

LA notable exception is the recursive description of a prefix sum algorithm in [26].

215

216 CHAPTER 8. PARALLEL RECURSION

We propose powerlist as a data structure that is more suitable for describing
parallel algorithms. The base—corresponding to the empty list for the linear
case—is a list of one element. A longer powerlist is constructed from the ele-
ments of two powerlists of the same length, as described below. Thus, a powerlist
is multiplicative in nature; its length doubles by applying the basic constructor.

There are two different ways in which powerlists are joined to create a longer
powerlist. If p, ¢ are powerlists of the same length then

p | ¢ is the powerlist formed by concatenating p and ¢, and

p X1 q is the powerlist formed by successively taking alternate items
from p and ¢, starting with p.

Further, we restrict p, ¢ to contain similar elements (defined in Section 8.2.1).
In the following examples the sequence of elements of a powerlist are enclosed
within angular brackets.

(

(0) >
(01) |
(01) <
The operation | is called tie and < is zip.

8.2.1 Definitions

A data item from the linear list theory will be called a scalar. (Typical scalars
are the items of base types—integer, boolean, etc.—tuples of scalars, functions
from scalars to scalars and linear lists of scalars.) Scalars are uninterpreted in
our theory. We merely assume that scalars can be checked for type compatibility.
We will use several standard operations on scalars for purposes of illustration.

Notational Convention : Linear lists will be enclosed within square brackets,
[]-

A powerlist is a list of length 2", for some n, n > 0, all of whose elements
are similar. We enclose powerlists within angular brackets, ().

Two scalars are similar if they are of the same type. Two powerlists are
similar if they have the same length and any element of one is similar to any
element of the other. (Observe that similar is an equivalence relation.)

Let S denote an arbitrary scalar, P a powerlist and u,v similar powerlists.
A recursive definition of a powerlist is

(S)or (P)oru|voruxuv

Ezamples

8.2. POWERLIST 217

{{{@) (0) ((e) (N

((a) (b)) \ / {c) (d))
(a) (b) () (d)
Figure 8.1: Representation of a complete binary tree where the data are at the

leaves. For leaf nodes, the powerlist has one element. For non-leaf nodes, the
powerlist has two elements, namely, the powerlists for the left and right subtrees.

(2) powerlist of length 1 containing a scalar

((2)) powerlist of length 1 containing a powerlist of length 1 of scalar
() not a powerlist

(n powerlist of length 1 containing the empty linear list
(RIB47) (4 []))

powerlist of length 2, each element of which is a powerlist of length

2, whose elements are linear lists of numbers

((04) (15)(26) (37))
a representation of the matrix [2 é 2 3] where each column is

an element of the outer powerlist.
((0123){(4567))
another representation of the above matrix where each row is an

element of the outer powerlist.

{{{a) (0)) ((e) (D))

a representation of the tree in Figure 8.1. The powerlist contains
two elements, one each for the left and right subtrees.

8.2.2 Functions over Powerlists

Convention : We write function application without parantheses where no
confusion is possible. Thus, we write “f 2” instead of “f(z)” and “g x y”
instead of “g(z,y)”. The constructors | and < have the same binding power
and their binding power is lower than that of function application. Throughout
this paper, S denotes a scalar, P a powerlist and x, y either scalar or powerlist.
Typical names for powerlist variables are p, q,r, s,t, u, v. O

Functions over linear lists are typically defined by case analysis—a function
is defined over the empty list and, recursively, over non-empty lists. Functions
over powerlists are defined analogously. For instance, the following function,
rev, reverses the order of the elements of the argument powerlist.

rev(z) = (x)
rev(p |) = (rev q) | (rev p)

218 CHAPTER 8. PARALLEL RECURSION

The case analysis, as for linear lists, is based on the length of the argument
powerlist. We adopt the pattern matching scheme of ML[38] and Miranda[52]2
to deconstruct the argument list into its components, p and ¢, in the recursive
case. Deconstruction, in general, uses the operators | and < ; see Section 8.3.
In the definition of rev, we have used | for deconstruction; we could have used
> instead and defined rev in the recursive case by

rev(p 1 q) = (rev q) X (rev p)

It can be shown, using the laws in Section 8.3, that the two proposed definitions
of rev are equivalent and that

rev(rev P) =P

for any powerlist P.

Scalar Functions

Operations on scalars are outside our theory. Some of the examples in this
paper, however, use scalar functions, particularly, addition and multiplication
(over complex numbers) and cons over linear lists. A scalar function, f, has zero
or more scalars as arguments and its value is a scalar. We coerce the application
of f to a powerlist by applying f “pointwise” to the elements of the powerlist.
For a scalar function f of one argument we define

fela=(p) | (fa)

It can be shown that

flprq)=(fp)>=(fq)

A scalar function that operates on two arguments will often be written as an
infix operator. For any such function & and similar powerlists p, ¢, u, v, we have

() © (y)=(z @ y)
(rlg) © (ulv)=@p @ u)| (¢ & v)
(p<gq) © (uxtv)=(p @ u) > (g & v)

Thus, scalar functions commute with both | and .

Note : Since a scalar function is applied recursively to each element of a pow-
erlist, its effect propagates through all “levels”. Thus, + applied to matrices
forms their elementwise sum.]

2Miranda is a trademark of Research Software Ltd.

8.3. LAWS 219

8.2.3 Discussion

The base case of a powerlist is a singleton list, not an empty list. Empty lists (or,
equivalent data structures) do not arise in the applications we have considered.
For instance, in matrix algorithms the base case is a 1 x 1 matrix rather than an
empty matrix, Fourier transform is defined for a singleton list (not the empty
list) and the smallest hypercube has one node.

The recursive definition of a powerlist says that a powerlist is either of the
form u < v or w | v. In fact, every non-singleton powerlist can be written in
either form in a unique manner (see Laws in Section 8.3). A simple way to view
p | ¢ = L is that if the elements of L are indexed by n-bit strings in increasing
numerical order (where the length of L is 2") then p is the sublist of elements
whose highest bit of the index is 0 and g is the sublist with 1 in the highest bit
of the index. Similarly, if v <t v = L then v is the sublist of elements whose
lowest bit of the index is 0 and v’s elements have 1 as the lowest bit of the index.

At first, it may seem strange to allow two different ways for constructing the
same list—using tie or zip. As we see in this paper this causes no difficulty, and
further, this flexibility is essential because many parallel algorithms—the Fast
Fourier Transform being the most prominent—exploit both forms of construc-
tion.

We have restricted u,v in v | v and u < v to be similar. This restriction
allows us to process a powerlist by recursive divide and conquer, where each
division yields two halves that can be processed in parallel, by employing the
same algorithm. (Square matrices, for instance, are often processed by quarter-
ing them. We will show how quartering, or quadrupling, can be expressed in
our theory.) The similarity restriction allows us to define complete binary trees,
hypercubes and square matrices that are not “free” structures.

The length of a powerlist is a power of 2. This restricts our theory somewhat.
It is possible to design a more general theory eliminating this constraint; we
sketch an outline in Section 8.6.

8.3 Laws

L0. For singleton powerlists, (z), (y)

{x) | (y) = (x) > (y)

L1. (Dual Deconstruction)
For any non-singleton powerlist, P, there exist similar powerlists

r, s, u,v such that
P=r|sand P=uxv

L2. (
(z) =(y) = (x=y)
(plg=ulv) = (p=u N g=0)
(pag=uiv) = (p=u A ¢=v)

220 CHAPTER 8. PARALLEL RECURSION

L3. (Commutativity of | and)
(P g)>a(ulv)=(prau)|(grav)

These laws can be derived by suitably defining tie and zip, using the standard
functions from the linear list theory. One possible strategy is to define tie as
the concatenation of two equal length lists and then, use the Laws L0 and L3
as the definition of zip; Laws L1, L2 can be derived next. Alternatively, these
laws may be regarded as axioms relating tie and zip.

Law LO is often used in proving base cases of algebraic identities. Laws
L1, L2 allow us to uniquely deconstruct a non-singleton powerlist using either
| or <. Law L3 is crucial. It is the only law relating the two construction
operators, | and <, in the general case. Hence, it is invariably applied in
proofs by structural induction where both constructors play a role.

Inductive Proofs

Most proofs on powerlists are by induction on the length, depth or shape of the
list. The length, len, of a powerlist is the number of elements in it. Since the
length of a powerlist is a power of 2, the logarithmic length, lgl, is a more useful
measure. Formally,

lgl{x) =0
lgl(u | v) =1+ (Igl u)

The depth of a powerlist is the number of “levels” in it.

depth (S)y =0
depth (P) =1 + (depth P)
depth (u | v) = depth u

(In the last case, since w,v are similar powerlists they have the same depth.)
Most inductive proofs on powerlists order them lexicographically on the pair
(depth, logarithmic length). For instance, to prove that a property II holds for
all powerlists, it is sufficient to prove

I1(S), and

II P = II(P), and

(ITu) A (ITv) A (u,v) similar = II(u | v)
The last proof step could be replaced by
(ITu) A (ITv) A (u,v) similar = II(u > v)

The shape of a powerlist P is a sequence of natural numbers ng, ni,...,nqy where
d is the depth of P and

ng is the logarithmic length of P,
ny is the logarithmic length of (any) element of P, say r
ng is the logarithmic length of any element of r, ...

8.4. EXAMPLES 221

A formal definition of shape is similar to that of depth. The shape is a linear
sequence because all elements, at any level, are similar. The shape and the
type of the scalar elements define the structure of a powerlist completely. For
inductive proofs, the powerlists may be ordered lexicographically by the pair
(depth, shape), where the shapes are compared lexicographically.

Ezample : The len, lgl and depth of ((01 23) (456 7)) are, 2, 1, 1,
respectively. The shape of this powerlist is the sequence, 1 2, because there are
2 elements at the outer level and 4 elements at the inner level.

8.4 Examples

We show a few small algorithms on powerlists. These include such well-known
examples as the Fast Fourier Transform and Batcher sorting schemes. We re-
strict the discussion in this section to simple (unnested) powerlists (where the
depth is 0); higher dimensional lists (and algorithms for matrices and hyper-
cubes) are taken up in a later section. Since the powerlists are unnested, induc-
tion based on length is sufficient to prove properties of these algorithms.

8.4.1 Permutations

We define a few functions that permute the elements of powerlists. The function
rev, defined in Section 8.2.2, is a permutation function. These functions appear
as components of many parallel algorithms.

Rotate
Function rr rotates a powerlist to the right by one; thus, rr{a b ¢ d) =
(d a b ¢). Function rl rotates to the left: ri{a bcd) = (bcd a).

rr(r) = (z) ;o rl{z) = ()
rr(uxv)=(rrov)xu , rli(uxo)=ovx(rl u)

There does not seem to be any simple definition of rr or rl using | as the
deconstruction operator. It is easy to show, using structural induction, that rr,
rl are inverses. An amusing identity is rev(rr(rev(rr P))) = P.

A powerlist may be rotated through an arbitrary amount, k, by applying
k successive rotations. A better scheme for rotating (u > v) by k is to rotate
both u, v by about k/2. More precisely, the function grr (given below) rotates
a powerlist to the right by k, where & > 0. It is straightforward to show that for
all k,k > 0, and all p, (g7 k p) = (rr®) p), where 7r(¥) is the k-fold application
of rr.

grr k (z) = (z)
grr (2 x k) (uv) = (grr k u) =< (grr k v)
grr (2xk+1) (uxv)=(grr (k+1) v) > (grr k w)

222 CHAPTER 8. PARALLEL RECURSION

P’s indices = (000 001 010 011 100 101 110 111)
List P = {a b c d e S g h)

P’s indices rotated right = (000 100 001 101 010 110 011 111)
rs P = (a c e g b d f h)

P’s indices rotated left = (000 010 100 110 001 011 101 111)
IsP = (a e b f c g d h)

Figure 8.2: Permutation functions rs, Is defined in Section 8.4.1.

Rotate Index

A class of permutation functions can be defined by the transformations
on the element indices. For a powerlist of 2" elements we associate an n-bit
index with each element, where the indices are the binary representations of
0,1,..,2" — 1 in sequence. (For a powerlist u | v, indices for the elements in
u have “0” as the highest bit and in v have “1” as the highest bit. In u > v,
similar remarks apply for the lowest bit.) Any bijection, h, mapping indices
to indices defines a permutation of the powerlist: The element with index 7 is
moved to the position where it has index (h ¢). Below, we consider two simple
index mapping functions; the corresponding permutations of powerlists are use-
ful in describing the shuffle-exchange network. Note that indices are not part
of our theory.

A function that rotates an index to the right (by one position) has the
permutation function rs (for right shuffle) associated with it. The definition
of rs may be understood as follows. The effect of rotating an index to the
right is that the lowest bit of an index becomes the highest bit; therefore, if
rs is applied to u < v, the elements of u—those having 0 as the lowest bit—
will occupy the first half of the resulting powerlist (because their indices have
“0” as the highest bit, after rotation); similarly, v will occupy the second half.
Analogously, the function that rotates an index to the left (by one position)
induces the permutation defined by Is (for left shuffle), below. Figure 8.2 shows
the effects of index rotations on an 8-element list.

rs(r) = () , Us(a) = (x)

rs(u<ov)=ulv , Is(u|v)=uxwv

It is trivial to see that rs, Is are inverses.

Inversion

The function inv is defined by the following function on indices. An element
with index b in P has index b’ in (inv P), where b’ is the reversal of the bit
string b. Thus,

8.4. EXAMPLES 223

000 001 010 011 100 101 110 111
inv(a b ¢ d e f g h) =
(a e ¢ g b f d h

The definition of inv is

inv(z) = (x)
inv(p | q) = (inv p) ex (inv q)
This function arises in a variety of contexts. In particular, inv is used to permute

the output of a Fast Fourier Transform network into the correct order.
The following proof shows a typical application of structural induction.

INV1. inv(p < q) = (inv p) | (inv Q)
Proof is by structural induction on p and q.
Base : inv({(z) < (y))
= {From Law L0 : (z) = (y) = (z) | (3)}
inv({z) | (y))

= {definition of inv}
inv{zx) < inv(y)

{inv{x) = (z),inv(y) = (y). Thus, they are singletons. Applying Law L0}
inv{x) | inv{y)
Induction :
inv((r | s) > (u [v))
= {commutativity of |, >}
inv((r<u) | (s> v))
= {definition of inv}
inv(r > u) < inv(s X v)
{induction}

(inv r | inv u) < (inv s | inv v)

= {|, > commute}
(inv r < inv) | (inv u X< inv v)
= {apply definition of inv to both sides of | }

inv(r | s) | inv(u | v) O
Using INV1 and structural induction, it is easy to establish
nv(inv P) = P,

inv(rev P) = rev(inv P)

224 CHAPTER 8. PARALLEL RECURSION

n=0 ([])

n=1 (0] [1])

n=2 ([00] [01] [11] [10])

n=3 ([000] [001] [011] [010] [110] [111] [101] [100])

Figure 8.3: Standard Gray code sequence for n, n =0,1,2,3

and for any scalar operator @
mu(P @ Q) = (inv P) ® (inv Q)

The last result holds for any permutation function in place of inv.

8.4.2 Reduction

In the linear list theory [5], reduction is a higher order function of two argu-
ments, an associative binary operator and a list. Reduction applied to & and
[apay ... ay] yields (ag ® a1 @ ... ® ay). This function over powerlists is defined
by

red® (z) =z
red® (p|q) = (red®p) & (red ®q)

8.4.3 Gray Code

Gray code sequence [19] for n, n > 0, is a sequence of 2" n-bit strings where
the consecutive strings in the sequence differ in exactly one bit position. (The
last and the first strings in the sequence are considered consecutive.) Standard
Gray code sequences for n = 0,1, 2, 3 are shown in Figure 8.3. We represent the
n-bit strings by linear lists of length n and a Gray code sequence by a powerlist
whose elements are these linear lists. The standard Gray code sequence may be
computed by function G, for any n.

GOo={(])
Gn+1)=(0:P)|(1:(rev P))
where P = (G n)

Here, (0 :) is a scalar function that takes a linear list as an argument and
appends 0 as its prefix. According to the coercion rule, (0 : P) is the powerlist
obtained by prefixing every element of P by 0. Similarly, (1 : (rev P)) is defined,
where the function rev is from Section 8.2.2.

8.4. EXAMPLES 225

8.4.4 Polynomial

A polynomial with coefficients p;, 0 < j < 2", where n > 0, may be represented
by a powerlist p whose j** element is p;. The polynomial value at some point

w is Z Dj X w’. For n > 0 this quantity is

0<j<2m
§ 2j § 2j+1
ijXu}J—F p2j+1><w3 .
0<j<2n—1 0<j<2n—1

The following function, ep, evaluates a polynomial p using this strategy.
In anticipation of the Fast Fourier Transform, we generalize ep to accept an
arbitrary powerlist as its second argument. For powerlists p, w (of, possibly,
unequal lengths) let (p ep w) be a powerlist of the same length as w, obtained
by evaluating p at each element of w.

(z) ep w = (x)
(p<q) epw = (p ep w?) + (w x (q ep w?))

Note that w? is the pointwise squaring of w. Also, note that ep is a pointwise
function in its second argument, i.e.,

pep (u|v)=(pepu)l|(pepv)

8.4.5 Fast Fourier Transform

For a polynomial p with complex coefficients, its Fourier transform is obtained
by evaluating p at a sequence (i.e., powerlist) of points, (W p). Here, (W p)
is the powerlist (w® w', .. ,w" 1), where n is the length of p and w is the n'”
principal root of 1. Note that (W p) depends only on the length of p but not
its elements; hence, for similar powerlists p, ¢, (W p) = (W q). Tt is easy to
define the function W in a manner similar to ep.

We need the following properties of W for the derivation of FFT. Equation
(1) follows from the definition of W and the fact that w?*" = 1, where N is the
length of p (and ¢). The second equation says that the right half of W (p < q)
is the negation of its left half. This is because each element in the right half is
the same as the corresponding element in the left half multiplied by w”'; since
w is the (2 x N)* root of 1, wV = —1.

Wipreagq) = (Wp)|(Wq) (8.1)
W(priq) = wu]| (—u),for some u (8.2)

The Fourier transform, F'T, of a powerlist p is a powerlist of the same length
as p, given by

FT p=pep (W p)

where ep is the function defined in Section 8.4.4.
The straightforward computation of (p ep v) for any p,v consists of eval-
uating p at each element of v; this takes time O(N?) where p,v have length

226 CHAPTER 8. PARALLEL RECURSION

N. Since (W p) is of a special form the Fourier transform can be computed in
O(N log N) steps, using the the Fast Fourier Transform algorithm [12]. This
algorithm also admits an efficient parallel implementation, requiring O(log N)
steps on O(N) processors. We derive the FFT algorithm next.
FT{x)
= {definition of FT}
z ep (W(z))
= {Since W{x) is a singleton, from the definition of ep}
(z)
For the general case,
FT(pr<q)
= {From the definition of FT'}
(p < q) ep W(paq)
= {from the definition of ep}
pep W3(p < q) + W(p > q) x (¢ ep W (p = q))
= {from the property of W; see equation (1)}
pep (Wp) | (Wq)+Wpeaq)x(qgep (Wp)| (W q))
= {distribute each ep over its second argument}
(pep (Wp) | (pep (W q)+W(pe<q)x((qgep (Wp)|(gep (W q)))
= {Wp)=Waq), pep (Wp)=FTp, gep (W q)=FT q}
(FT p) | (FT p)) + W(p < q) x (FT q) | (FT q))
= A{using P,Q for FT p, FT ¢, and u | (—u) for W(p i q); see equation (2)}
(PIP)+(u| —u)x(Q]Q)
= {| and x in the second term commute}
(P | P)+((uxQ)] (—uxQ))
= {| and 4 commute}
(P+uxQ)|(P—uxQ)

We collect the two equations for F'T to define F'F'T, the Fast Fourier Trans-
form. In the following, (powers p) is the powerlist (w® w!, .., wN~1) where N
is the length of p and w is the (2 x N)* principal root of 1. This was the value
of uw in the previous paragraph. The function powers can be defined similarly
to ep.

FFT{x) = (z)
FFT(pxig) = (P+uxQ) | (P—uxQ)
where P=FFTp
Q=FFTq
u = powers p
It is clear that FFT(p <1 ¢) can be computed from (FFT p) and (FFT q) in
O(N) sequential steps or O(1) parallel steps using O(N) processors (u can be

8.4. EXAMPLES 227

computed in parallel), where N is the length of p. Therefore, FFFT(p < ¢) can
be computed in O(N log N) sequential steps or, O(log N') parallel steps using
O(N) processors.

The compactness of this description of FFT is in striking contrast to the
usual descriptions; for instance, see [10, Section 6.13]. The compactness can be
attributed to the use of recursion and the avoidance of explicit indexing of the
elements by employing | and <. FFT illustrates the need for including both

| and < as constructors for powerlists. (Another function that employs both
| and > is inv of Section 8.4.1.)

Inverse Fourier Transform
The inverse of the Fourier Transform, IFT, can be defined similarly to the
FFT. We derive the definition of IFT from that of the FFT by pattern matching.
For a singleton powerlist, (x), we compute

[FT(z)

— (&) = FFT{a)}
IFT(FFT(z))

= {IFT, FFT are inverses}
(z)

For the general case, we have to compute [FT(r | s) given r,s. Let
IFT(r|s)=pxgq

in the unknowns p,q. This form of deconstruction is chosen so that we can
easily solve the equations we generate, next. Taking FFT of both sides,

FFT(IFT(r|s))=FFT(pxq)

The left side is (r | s) because IFT, FFT are inverses. Replacing the right
side by the definition of FFT(p > q) yields the following equations.

rls=P+uxQ)| (P-—uxQ)
P=FFTp

Q=FFT q

u = powers p

These equations are easily solved for the unknowns P,Q,u,p,q. (The law of
unique deconstruction, L2, can be used to deduce from the first equation that
r=P+4+uxQ@Qand s=P—ux@. Also, since p and r are of the same length we
may define u using r instead of p.) The solutions of these equations yield the
following definition for IFT. Here, /2 divides each element of the given powerlist
by 2.

IFT(z) = (z)
IFT(r|s)=pxgq
where P =(r+s)/2

228 CHAPTER 8. PARALLEL RECURSION

U = powers r
Q=((r—s)/2)/u
p=IFT P
q=IFT Q

As in the FFT, the definition of IFT includes both constructors, | and < .
It can be implemented efficiently on a butterfly network. The complexity of
IFT is same as that of the FFT.

8.4.6 Batcher Sort

In this section, we develop some elementary results about sorting and discuss
two remarkable sorting methods due to Batcher[4]. We find it interesting that
I (not |) is the preferred operator in discussing the principles of parallel
sorting. Henceforth, a list is sorted means that its elements are arranged in
non-decreasing order.

A general method of sorting is given by

sort(z) = (z)
sort(p < q) = (sort p) merge (sort q)

where merge (written as a binary infix operator) creates a single sorted powerlist
out of the elements of its two argument powerlists each of which is sorted. In
this section, we show two different methods for implementing merge. One
scheme is Batcher merge, given by the operator bm. Another scheme is given
by bitonic sort where the sorted lists u,v are merged by applying the function
bi to (u | (rev v)).

A comparison operator, [, is used in these algorithms. The operator is
applied to a pair of equal length powerlists, p, g; it creates a single powerlist out
of the elements of p, g by

plg=(p min g) > (p max q)

That is, the 2i*" and (2i + 1)*" items of p | q are (p; min ¢;) and (p; max ¢;),
respectively. The powerlist p | ¢ can be computed in constant time using
O(len p) processors.

Bitonic Sort

A sequence of numbers, g, x1, .., Z;, .., TN, 18 bitonic if there is an index
i, 0 < 4 < N, such that zg,21,..,2; is monotonic (ascending or descending)
and z;,..,xy is monotonic. The function bi, given below, applied to a bitonic
powerlist returns a sorted powerlist of the original items.

bi(p > q) = (bi p) | (i q)

8.4. EXAMPLES 229

For sorted powerlists u,v, the powerlist (u | (rev v)) is bitonic; thus u,v can
be merged by applying bi to (u | (rev v)). The form of the recursive definition
suggests that bi can be implemented on O(N) processors in O(log N) parallel
steps, where N is the length of the argument powerlist.

Batcher Merge
Batcher has also proposed a scheme for merging two sorted lists. We define
this scheme, bm, as an infix operator below.

(@) bm (y) = (z)] {y)

(reas) bm (upav) = (rbmv)] (s bm w)

The function bm is well-suited for parallel implementation. The recursive form
suggests that (r bm v) and (s bm u) can be computed in parallel. Since | can be
applied in O(1) parallel steps using O(N) processors, where N is the length of
the argument powerlists, the function bm can be evaluated in O(log N) parallel
steps. In the rest of this section, we develop certain elementary facts about
sorting and prove the correctness of bi and bm.

Elementary Facts about Sorting

We consider only “compare and swap” type sorting methods. It is known (see
[29]) that such a sorting scheme is correct if and only if it sorts lists containing
0’s and 1’s only. Therefore, we restrict our discussion to powerlists containing
0’s and 1’s, only.

For a powerlist p, let (2 p) be the number of 0’s in it. To simplify notation,
we omit the space and write zp. Clearly,

A0. z(p™q) = zp+ zq and z(x) is either 0 or 1.
Powerlists containing only 0’s and 1’s have the following properties.

Al. (x) sorted and (x) bitonic.
A2. (pmq) sorted = p sorted A ¢ sorted A 0 < zp—2¢<1
A3. (pq) bitonic = p bitonic A ¢ bitonic A |zp — z¢q| < 1

Note : The condition analogous to (A2) under which p | ¢ is sorted is,

AZ. (p]q) sorted = p sorted A ¢ sorted A (zp < (len p) = zq=0)

The simplicity of (A2), compared with (A2’), may suggest why < is the pri-

mary operator in parallel sorting. O
The following results, (B1, B2), are easy to prove. We prove (B3).

B1. psorted, g sorted, zp > z¢ = (p min ¢) =p A (p max q) =gq O

B2, z(p]q)=z2p+2q O

230 CHAPTER 8. PARALLEL RECURSION

B3. psorted, ¢ sorted, |zp — zq| <1 = (p] q) sorted
Proof: Since the statement of B3 is symmetric in p, ¢, assume zp > zq.

p sorted, ¢ sorted, |zp — zq| < 1
= {assumption: zp > zq}
p sorted, ¢ sorted, 0 < zp—z2q < 1
= {A2 and B1}
p < ¢ sorted, (p min ¢) =p, (p max ¢q) =gq
= {replace p,q in p > ¢ by (p min ¢), (p max q)}
(p min ¢) > (p max q) sorted
= {definition of p | ¢}
p | ¢ sorted

Correctness of Bitonic Sort

We show that the function bi applied to a bitonic powerlist returns a sorted
powerlist of the original elements: (B4) states that bi preserves the number
of zeroes of its argument list (i.e., it loses no data) and (B5) states that the
resulting list is sorted.

B4. z(bip)=2zp

Proof: By structural induction, using B2. O
B5. L bitonic = (bi L) sorted

Proof: By structural induction.

Base: Straightforward.

Induction: Let L =p < gq
p X g bitonic
= {A3}
p bitonic, ¢ bitonic, |zp — zq| < 1
= {induction on p and ¢}
(bi p) sorted, (bi q) sorted, |zp — zq| <1
= {from B4: z(bi p) = zp, z(bi q) = zq}
(bi p) sorted, (bi q) sorted, |z(bi p) — z(bi ¢)| <1
= {apply B3 with (bi p), (bi q) for p,q}
(bi p) | (bi q) sorted
= {definition of bi}
bi(p < q) sorted

8.4. EXAMPLES 231

Correctness of Batcher Merge

We can show that bm merges two sorted powerlists in a manner similar to the
proof of bi. Instead, we establish a simple relationship between the functions
bm and bi from which the correctness of the former is obvious. We show that

B6. pbm q=0bi(p| (rev q)), where rev reverses a powerlist (Section 8.2.2).

If p, q are sorted then p | (rev ¢) is bitonic (a fact that we don’t prove here).
Then, from the correctness of bi it follows that bi(p | (rev q)) and, hence, p bm g
is sorted (and it contains the elements of p and q).

Proof of B6: By structural induction.

Base: Let p, ¢ = (), (y)

bi((x) | rev(y))
{definition of rev}
bi({z) | (y))
{({z) | {y) = ((x) < (y))}
bi((x) > (y))
{definition of bi}
() 1)

= {definition of bm}

(x) bm (y)

Induction: Let p, g =715, u v

bi(p | (rev q))
= {expanding p, ¢}

bi((r > s) | rev(u i v))
= {definition of rev}

bi((r > 8) | (rev v > rev u))

{], > commute}

bi((r | rev v) < (s | rev u))
= {definition of bi}

bi(r | rev v) | bi(s | rev u)
= {induction}

(r bm v) | (s bm)
= {definition of bm}
(r>as) bm (u < v)

232 CHAPTER 8. PARALLEL RECURSION

= {using the definitions of p, ¢}
pbmq o

The compactness of the description of Batcher’s sorting schemes and the
simplicity of their correctness proofs demonstrate the importance of treating
recursion and parallelism simultaneously.

8.4.7 Prefix Sum

Let L be a powerlist of scalars and @ be a binary, associative operator on that
scalar type. The prefix sum of L with respect to @, (ps L), is a list of the same
length as L given by

s (X0, X1, .., Tiy .oy TN) = (T, To B T1, .., Lo D X1 D ..Ti, .., To D1 D .. BTN,

that is, in (ps L) the element with index 4, ¢ > 0, is obtained by applying & to
the first (¢ + 1) elements of L in order. We will give a formal definition of prefix
sum later in this section.

Prefix sum is of fundamental importance in parallel computing. We show
that two known algorithms for this problem can be concisely represented and
proved in our theory. Again, zip turns out to be the primary operator for
describing these algorithms.

A particularly simple scheme for prefix sum of 8 elements is shown in Fig-
ure 8.4. In that figure, the numbered nodes represent processors, though the
same 8 physical processors are used at all levels. Initially, processor i holds the
list element L;, for all i. The connections among the processors at different
levels depict data transmissions. In level 0, each processor, from 0 through 6,
sends its data to its right neighbor. In the i** level, processor i sends its data
to (i + 2%), if such a processor exists (this means that for j < 2%, processor j
receives no data in level ¢ data transmission). Each processor updates its own
data, d, to r@d where r is the data it receives; if it receives no data in some level
then d is unchanged. It can be shown that after completion of the computation
at level (log,(len L)), processor i holds the i'" element of (ps L).

Another scheme, due to Ladner and Fischer[32], first applies @ to adjacent
elements xo;, ro;+1 to compute the list (xg @ x1,.. x2; ® T2i41,..). This list
has half as many elements as the original list; its prefix sum is then computed
recursively. The resulting list is (xg ® z1,..,20 ® 1 B .. B T2; D Tait1,...).
This list contains half of the elements of the final list; the missing elements are
o, To B 1 P To, .., 9 D T1 D .. B Ty, ... These elements can be computed by
“adding” x2, x4, .., appropriately to the elements of the already computed list.

Both schemes for prefix computation are inherently recursive. Our formula-
tions will highlight both parallelism and recursion.

Specification

As we did for the sorting schemes (Section 8.4.6), we introduce an operator
in terms of which the prefix sum problem can be defined. First, we postulate

8.4. EXAMPLES 233

4 5 o7 level 0
\6 7 16V€1 1
4 level 2

o0 ol 2 3 4 5 6 7 level 3

Figure 8.4: A network to compute the prefix sum of 8 elements.

that 0 is the left identity element of @, i.e., 0 ® x = x. For a powerlist p, let
p* be the powerlist obtained by shifting p to the right by one. The effect of
shifting is to append a 0 to the left and discard the rightmost element of p;
thus, (@ b ¢ d)* = (0 a b ¢). Formally,

(z)" = (0)

(prq)" =q"ap
It is easy to show
Sl.(r@ds)*=r*®s*
S2.(prag)™ =p* g’
Consider the following equation in the powerlist variable z.
z2=2*®L (DE)

where L is some given powerlist. This equation has a unique solution in z,
because

20 = (2")o® Lo
=0 Lo
:LO ,and
Zi4+1 :zi@Li+1,O§i<(lenL)—1

For L={(abcd),z={a a®b a®dbdc aPb®c®dd) which is exactly
(ps L). We define (ps L) to be the unique solution of (DE), and we call (DE)
the defining equation for (ps L).

Notes

1. The operator @ is not necessarily commutative. Therefore, the rhs of (DE)
may not be the same as L ¢ z*.

234 CHAPTER 8. PARALLEL RECURSION

2. The operator & is scalar; so, it commutes with > .

3. The uniqueness of the solution of (DE) can be proved entirely within the
powerlist algebra, similar to the derivation of Ladner-Fischer scheme given
later in this section.

4. Adams[1] has specified the prefix-sum problem without postulating an
explicit “0” element. For any @, he introduces a binary operator & over
two similar powerlists such that p@® ¢ = p* @ ¢. The operator & can be
defined without introducing a “0”.

Computation of the Prefix Sum

The function sps (simple prefix sum) defines the scheme of Figure 8.4.

sps (x) = (x)
sps L = (sps u) < (sps v)
where u v =L*"® L

In the first level in Figure 8.4, L* @ L is computed. If L = (xg,21,..,;,...)
then this is (zg,z¢o ® z1,..,2; ® Ti41..). This is the zip of the two sublists
(x0, 21 ® X2, .., Tai—1 D Ta;, ..) and (xo B x1, .., T2; P T2it1,..). Next, prefix sums
of these two lists are computed (independently) and then zipped.

The Ladner-Fischer scheme is defined by the function If.

If (x) = (x)
f(prag)= (" ©p)pat
where t = If (p @ q)

Correctness

We can prove the correctness of sps and [f by showing that the function ps
satisfies the equations defining each of these functions. It is more instructive to
see that both sps and If can be derived easily from the specification (DE). We
carry out this derivation for the Fischer-Ladner scheme as an illustration of the
power of algebraic manipulations. First, we note, ps{x) = (z).

ps(z)
= {from the defining equation DE for ps{(z)}
(ps(z))” & (x)
= {definition of *}
(0) & (z)
= {® is a scalar operation}
(0@ x)
= {0 is the identity of &}
(z)

8.4. EXAMPLES 235

Derivation of Ladner-Fischer Scheme

Given a powerlist p < ¢, we derive an expression for ps(p < q). Let r < ¢, in
unknowns r, t, be ps(p 1 q). We solve for r,¢.

L
{r >t =ps (pxq). Using (DE)}
(r>at)” @ (p>aq)
{(r=<t)* =t*>r}
(" par) @ (ppag)
{®, > commute}
(" @p)pa(roq)

Applying law L2 (unique deconstruction) to the equation r <1 t = (t*®p) < (r&®
q), we conclude that

LFl. r=t*®p, and

LF2. t=r®dq

Now, we eliminate r from (LF2) using (LF1) to get ¢ =¢* @ p @ ¢. Using
(DE) and this equation we obtain

LF3. t=ps(p®q)
We summarize the derivation of ps(p > q).

ps(p > q)
= {by definition}
T
{ Using (LF1) for r}
(t*Dp) >t

where t is defined by LF3. This is exactly the definition of the function If for a
non-singleton powerlist. We also note that

r
{by eliminating ¢ from (LF1) using (LF2) }
(r&g) @p
= { definition of *}
roqop

236 CHAPTER 8. PARALLEL RECURSION

Using (DE) and this equation we obtain LF4 that is used in proving the cor-
rectness of sps, next.

LF}. r=ps(¢"®p)
Correctness of sps
We show that for a non-singleton powerlist L,

ps L = (ps u) > (ps v), where uxtv = L* @ L.
Proof: Let L =p < q. Then

ps L
= {L=pxgq}
ps(p > q)

= {ps(p > q) = r >x t, where r, ¢ are given by (LF4,LF3)}
ps(q” ©p) > ps(p @ q)

= {Letting u=¢* ®p, v=pDq}
(ps u) > (ps v)

Now, we show that ut<tv =L* & L.

ux<v
fu=q¢"®p, v=pdq}
(" ®p)>=(pdq)
{®, > commute}
(¢"=ap)@(p>=q)
= {Apply the definition of * to the first term}
(p=gq)* @ (p>q)
= {L=pm>gq}
L*o L

Remarks. A more traditional way of describing a prefix sum algorithm, such
as the simple scheme of Figure 8.4, is to explicitly name the quantities that are
being computed, and establish relationships among them. Let y;; be computed
by the " processor at the j* level. Then, for all 4,5, 0 <i < 2", 0<j <mn,
where n is the logarithmic length of the list,

Yio = X4, and

Yiooij i>27
Yij+1 = Ol 7 i< Yij

8.5. HIGHER DIMENSIONAL ARRAYS 237

The correctness criterion is
Yin = To D .. DXy

This description is considerably more difficult to manipulate. The parallelism
in it is harder to see. The proof of correctness requires manipulations of indices:
for this example, we have to show that for all 4, j

Yij :,TkEB..EBLL'?
where k = max(0,i — 27 + 1).

The Ladner-Fischer scheme is even more difficult to specify in this manner.
Algebraic methods are to be preferred for describing uniform operations on
aggregates of data.

8.5 Higher Dimensional Arrays

A major part of parallel computing involves arrays of one or more dimensions.
An array of m dimensions (dimensions are numbered 0 through m — 1) is rep-
resented by a powerlist of depth (m — 1). Conversely, since powerlist elements
are similar, a powerlist of depth (m — 1) may be regarded as an array of di-
mension m. For instance, a matrix of r rows and ¢ columns may be represented
as a powerlist of ¢ elements, each element being a powerlist of length r storing
the items of a column; conversely, the same matrix may be represented by a
powerlist of r elements, each element being a powerlist of ¢ elements.

In manipulating higher dimensional arrays we prefer to think in terms of
array operations rather than operations on nested powerlists. Therefore, we
introduce construction operators, analogous to | and >, for tie and zip along
any specified dimension. We use |';><’ for the corresponding operators in di-
mension 1, |”, <" for the dimension 2, etc. The definitions of these operators
are in Section 8.5.2; for the moment it is sufficient to regard |" as the point-
wise application of | to the argument powerlists (and similarly, 0<’). Thus,
for similar (power) matrices A, B that are stored columnwise (i.e., each element
is a column), A | B is the concatenation of A, B by rows and A |' B is their
concatenation by columns. Figure 8.5 shows applications of these operators on
specific matrices.

Given these constructors we may define a matrix to be either

a singleton matrix ((z)), or
p | ¢ where p, ¢ are (similar) matrices, or
u |" v where u, v are (similar) matrices.

Analogous definitions can be given for n-dimensional arrays. Observe that the
length of each dimension is a power of 2. As we had in the case of a pow-
erlist, the same matrix can be constructed in several different ways, say, first

238 CHAPTER 8. PARALLEL RECURSION

AN A AN A
2 4 0 1
vV VvV vV Vv
A AN AN A AN AN N A
2 4 0 1 2 0 4 1
A|B_<3 5 6 7> ANB_<3 6 5 7>
vV V V V vV V V V
FANEA VANEVAN
2 4 2 4
, . /3 5 A A
A|B—<O1 A B = 3 5
6 7 6 7
VvV Vv vV Vv

Figure 8.5: Applying |, &< ,|,0<’ over matrices. Matrices are stored by
columns. Typical matrix format is used for display, though each matrix is
to be regarded as a powerlist of powerlists.

by constructing the rows and then the columns, or vice versa. We will show, in
Section 8.5.2, that

Pla)l wlv)=@ul(]v)
ie., |, commute.

Note : We could have defined a matrix using < and <’ instead of | and
|”. As | and 1 are duals in the sense that either can be used to construct
(or uniquely deconstruct) a powerlist, |" and <’ are also duals, as we show in
Section 8.5.2. Therefore, we will freely use all four construction operators for
matrices. a

Ezample : (Matrix Transposition)
Let 7 be a function that transposes matrices. From the definition of a matrix,
we have to consider three cases in defining 7.

7((x)) = ((x))
Tl =(p ! (r9
m(u " v) = (1 u) | (1)

The description of function 7, though straightforward, has introduced the pos-
sibility of an inconsistent definition. For a 2 x 2 matrix, for instance, either of
the last two deconstructions apply, and it is not obvious that the same result
is obtained independent of the order in which the rules are applied. We show
that 7 is a function.

We prove the result by structural induction. For a matrix of the form ({(z)),
only the first deconstruction applies, and, hence, the claim holds. Next, consider

8.5. HIGHER DIMENSIONAL ARRAYS 239

pl4a o plo u

u | v o qlowv

Figure 8.6: Schematic of the transposition of a square powermatrix.

a matrix to which both of the last two deconstructions apply. Such a matrix is
of the form (p | ¢) |" (u | v) which, as remarked above, is also (p |" w) | (¢ |" v).
Applying one step of each of the last two rules in different order, we get

() [(u]v))

= {applying the last rule}
(7 [@) | ((u | v))

= {applying the middle rule}
((rp) " (r @) [((Tu) [(7 v))

)

m((p [) | (g " v))

= {applying first the middle rule, then the last rule}

(rp) [(Tw) " ((Tq)|(7v))

= {|,| commute}

((rp) " (T @) [(T w) [(T0))

And

From the induction hypothesis, (7 p), (7 ¢), etc., are well defined. Hence,

(el wlv)=7(p] u) (| v)

Crucial to the above proof is the fact that | and |" commute; this is remi-
niscent of the “Church-Rosser Property” [11] in term rewriting systems. Com-
mutativity is so important that we discuss it further in the next subsection.

It is easy to show that

/

T (praq) = (7 p) > (7 q) and
T (ud v) = (1 u) < (1 v)

Transposition of a square (power) matrix can be defined by deconstructing
the matrix into quarters, transposing them individually and rearranging them,
as shown in Figure 8.6. From the transposition function 7 for general matrices,
we get a function o for transpositions of square matrices

o((z)) = ((x))
ol @) " (wlv)=op) [(o49)]({(ou)] (sv))

Note the effectiveness of pattern matching in this definition.

240 CHAPTER 8. PARALLEL RECURSION

8.5.1 Pointwise Application

Let g be a function mapping items of type a to type 5. Then ¢’ maps a powerlist
of a-items to a powerlist of g-items.

g'(z) = (g =)
g(rls)=() I s)

Similarly, for a binary operator op

(x) op" {y) = (x op y)
(r [s)op” (u]v)=(rop"u)|(sop v)

We have defined these two forms explicitly because we use one or the other
in all our examples; f’ for a function f of arbitrary arity is similarly defined.
Observe that f/ applied to a powerlist of length N yields a powerlist of length V.
The number of primes over f determines the dimension at which f is applied
(the outermost dimension is numbered 0; therefore writing <, for instance,
without primes, simply zips two lists). The operator for pointwise application
also appears in [3] and in [49].

Common special cases for the binary operator, op, are | and 1 and their

m

——
"o

pointwise application operators. In particular, writing ><"" to denote > *** |
we define, 1? = < and for m > 0,

)

(r <™ w) | (s>)

() ™ (y)

=(xa™
(r] s)pa™ (u|v) =

From the definition of f’, we conclude that f’ and | commute. Below, we
prove that f’ commutes with > .

Theorem 1 f', 1 commute.

Proof: ~We prove the result for unary f; the general case is similar. Proof is
by structural induction.

Base: f'({x) > (y))
= {{x) = (y) = () | (W)}
f'(@) | ()
= {definition of f}
f'@) | f(y)
= {fx), f'{y) = (f x),{f y). These are singleton lists}
f'(x) pa f'(y)
Induction:
[) > (u | v))

8.5. HIGHER DIMENSIONAL ARRAYS 241

f'((p>au) | (gav))

= {f’, | commute}

f'prau) | f/(gpav)
= {induction}

((f" p) o< (" w)) [((f" q) (" v))

= {]|, = commute}

((f"p) | (" @) o< ((f" u) | (f)

= {f’, | commute}

(f'(p [@) > (f'(u | v)) o

Theorem 2 For a scalar function f, f' = f.

Proof: Proof by structural induction is straightforward. a

/

Theorem 3 If f,g commute then so do f',g'.

Proof: By structural induction.]
The following results about commutativity can be derived from Theorems
1,2,3. In the following, m,n are natural numbers.

C1. For any f and m > n, f™,|* commute, and f™, <" commute.
C2. For m #n, |™,|™ commute, and >, <" commute.

C3. For all m,n, |™, <" commute.

C4. For any scalar function f, f,|™ commute, and f,><" commute.

C1 follows by applying induction on Theorems 1 and 3 (and the fact that f/, |
commute). C2 follows from C1; C3 from C1, Law L3 and Theorem 3; C4 from
C1 and Theorem 2.

8.5.2 Deconstruction

In this section we show that any powerlist that can be written as p |™ ¢ for
some p,q can also be written as u <t v for some u,v and vice versa; this is
analogous to Law L1, for dual deconstruction. Analogous to Law L2, we show
that such deconstructions are unique.

Theorem 4 (dual deconstruction): For any p,q and m > 0, if p |™ q is defined
then there exist u,v such that

uxd™ov=p|"q

Conversely, for any u,v and m > 0, if u <" v is defined then there exist some
P, q such that

plmg=uxmuv]

We do not prove this theorem; its proof is similar to the theorem given below.

242 CHAPTER 8. PARALLEL RECURSION

Theorem 5 (unique deconstruction): Let ® be | or <. For any natural
number m,

(PeMqg=u@Mv) = (p=u A ¢=0)

Proof: Proof is by induction on m.

m=20 : The result follows from Law L2.
m=mn+1 : Assume that ® = | . The proof is similar for ® = <. We prove
the result by structural induction on p.

Base: p={(a), g=(b) , u={c), v={(d)

(@) |"*1 () = (c) ["* {d)

= {definition of |**1}
(a]"b) ={c|"d)

= {unique deconstruction using Law L2}
al"b=c|"d

= {induction on n}
(a=¢) N (b=4d)

= {Law L2}
((a) = () A ((b) = (d))

Induction: p=po | p1, ¢=q | @1, u=1uo | u1, v="10 | 0
(o | p1) "™ (o0 | @1) = (uo | wr) ["*' (vo | v1)
= {definition of |**1}
(o " q0) | (p1 ["*' 1) = (uo ["*F o) | (w1 [**1 v1)
= {unique deconstruction using Law L2}
(po " q0) = (uo ["* wo) A (p1 " q1) = (wr ["* v1)
= {induction on the length of po, g0, p1,q1}
(po =wuo) A (g0 =v0) A (pr=u1) A (¢1 =11)
= {Law L2}
(po [p1) = (uo [u1) A (g0 | @1) = (vo | v1)

Theorems 4 and 5 allow a richer variety of pattern matching in function
definitions, as we did for matrix transposition. We may employ |, <" for any
natural m,n to construct a pattern over which a function can be defined.

8.5.3 Embedding Arrays in Hypercubes

An n-dimensional hypercube is a graph of 2" nodes, n > 0, where each node has
a unique n-bit label. Two nodes are neighbors, i.e., there is an edge between
them, exactly when their labels differ in a single bit. Therefore, every node
has n neighbors. We may represent a n-dimensional hypercube as a powerlist
of depth n; each level, except the innermost, consists of two powerlists. The
operators |™,>1" for natural m,n can be used to access the nodes in any one
(or any combination of) dimensions.

8.6. REMARKS 243

We conclude with an example that shows how higher dimensional structures,
such as hypercubes, are easily handled in our theory. Given an array of size
20 x 2™ x ... 2™d we claim that its elements can be placed at the nodes of a
hypercube (of dimension mg+mi +..4+mg) such that two “adjacent” data items
in the array are placed at neighboring nodes in the hypercube. Here, two data
items of the array are adjacent if their indices differ in exactly one dimension,
and by 1 modulo N, where N is the size of that dimension. (This is called
“wrap around” adjacency.)

The following embedding algorithm is described in [34, Section 3.1.2]; it
works as follows. If the array has only one dimension with 2" elements, then
we create a gray code sequence, G m (see Section 8.4.3). Abbreviate G m by g.
We place the i item of the array at the node with label g;. Adjacent items,
at positions ¢ and ¢ + 1 (+ is taken modulo 2™ — 1), are placed at nodes g; and
gi+1 which differ in exactly one bit, by the construction.

This idea can be generalized to higher dimensional arrays as follows. Con-
struct gray code sequences for each dimension independently; store the item
with index (ig,i1,...,%q4) at the node (giy; Giy;---;9:i,) Where ¢ denotes the
concatenations of the bit strings. By definition, adjacent items differ by 1 in
exactly one dimension, k. Then, their gray code indices are identical in all
dimensions except k£ and they differ in exactly one bit in dimension k.

We describe a function, em, that embeds an array in a hypercube. Given an
array of size 20 x2™1 x..2™4 it permutes its elements to an array 2 X 2 X ... X 2,

m
where m = mg + .. + mgq, and the permutation preserves array adjacency as de-
scribed. The algorithm is inspired by the gray code function of Section 8.4.3.
In the following, S matches only with a scalar and P with a powerlist.

em(S) = (S)
em(P) =em P

em(u | v) = (em u) | {em (rev v))

The first line is the rule for embedding a single item in O-dimensional hypercube.
The next line, simply, says that an array having length 1 in a dimension can be
embedded by ignoring that dimension. The last line says that a non-singleton
array can be embedded by embedding the left half of dimension 0 and the reverse
of the right half in the two component hypercubes of a larger hypercube.

8.6 Remarks
Related Work

Applying uniform operations on aggregates of data have proved to be extremely
powerful in APL [23]; see [3] and [5] for algebras of such operators. One of the
earliest attempts at representing data parallel algorithms is in [42]. In their
words, “an algorithm... performs a sequence of basic operations on pairs of

244 CHAPTER 8. PARALLEL RECURSION

data that are successively 2(5=1) 2(k=2) 90 —] Jocations apart”. An algo-
rithm operating on 2V pieces of data is described as a sequence of N parallel
steps of the above form where the k' step, 0 < k < N, applies in parallel a
binary operation, OPER, on pairs of data that are 20V=%) apart. They show
that this paradigm can be used to describe a large number of known parallel
algorithms, and any such algorithm can be efficiently implemented on the Cube
Connected Cycle connection structure. Their style of programming was imper-
ative. It is not easy to apply algebraic manipulations to such programs. Their
programming paradigm fits in well within our notation. Mou and Hudak[40]
and Mou[41] propose a functional notation to describe divide and conquer-type
parallel algorithms. Their notation is a vast improvement over Preparata and
Vuillemin’s in that changing from an imperative style to a functional style of
programming allows more succinct expressions and the possibility of algebraic
manipulations; the effectiveness of this programming style on a scientific prob-
lem may be seen in [53]. They have constructs similar to tie and zip, though
they allow unbalanced decompositions of lists. An effective method of pro-
gramming with vectors has been proposed in [7, 8]. He proposes a small set of
“yector-scan” instructions that may be used as primitives in describing parallel
algorithms. Unlike our method he is able to control the division of the list and
the number of iterations depending on the values of the data items, a necessary
ingredient in many scientific problems. Jones and Sheeran|[24] have developed
a relational algebra for describing circuit components. A circuit component is
viewed as a relation and the operators for combining relations are given ap-
propriate interpretations in the circuit domain. Kapur and Subramaniam|[25]
have implemented the powerlist notation for the purpose of automatic theorem
proving. They have proved many of the algorithms in this paper using an in-
ductive theorem prover, called RRL (Rewrite Rule Laboratory), that is based
on equality reasoning and rewrite rules. They are now extending their theorem
prover so that the similarity constraints on the powerlist constructors do not
have to be stated explicitly.

One of the fundamental problems with the powerlist notation is to devise
compilation strategies for mapping programs (written in the powerlist notation)
to specific architectures. The architecture that is the closest conceptually is the
hypercube. Kornerup[31] has developed certain strategies whereby each parallel
step in a program is mapped to a constant number of local operations and
communications at a hypercube node.

Combinational circuit verification is an area in which the powerlist nota-
tion may be fruitfully employed. Adams[1] has proved the correctness of adder
circuits using this notation. A ripple-carry adder is typically easy to describe
and prove, whereas a carry-lookahead adder is much more difficult. Adams has
described both circuits in our notation and proved their equivalence in a remark-
ably concise fashion. He obtains a succinct description of the carry-lookahead
circuit by employing the prefix-sum function (See Section 4.7).

8.6. REMARKS 245

Powerlists of Arbitrary Length

The lengths of the powerlists have been restricted to be of the form 2", n > 0,
because we could then develop a simple theory. For handling arbitrary length
lists, Steele[48] suggests padding enough “dummy” elements to a list to make
its length a power of 2. This scheme has the advantage that we still retain the
simple algebraic laws of powerlist. Another approach is based on the observation
that any positive integer is either 1 or 2 X m or 2 x m + 1, for some positive
integer m; therefore, we deconstruct a non-singleton list of odd length into two
lists p, ¢ and an element e, where e is either the first or the middle or the last
element. For instance, the following function, rev, reverses a list.

rev {(x) = (z)
q) = (rev q) | (rev p)
elq)=(revqlelrevp)

The last line of this definition applies to a non-singleton list of odd length; the
list is deconstructed into two lists p, ¢ of equal length and e, the middle element.
(We have abused the notation, applying | to three arguments). Similarly, the
function If for prefix sum may be defined by

If (x) = (x)

fpraq) =@ @®p)at

lflexaprag)=exa(ed (t*®p))a(edt)
where t = If (p & q)

In this definition, the singleton list and lists of even length are treated as
before. A list of odd length is deconstructed into e, p,q, where e is the first
element of the argument list and p > ¢ constitutes the remaining portion of the
list. For this case, the prefix sum is obtained by appending the element e to
the list obtained by applying e® to each element of If (p > q); we have used the
convention that (e @ L) is the list obtained by applying e® to each element of
list L.

The Interplay between Sequential and Parallel Computa-
tions.

The notation proposed in this paper addresses only a small aspect of parallel
computing. Powerlists have proved to be highly successful in expressing com-
putations that are independent of the specific data values; such is the case, for
instance, in the Fast Fourier Transform, Batcher merge and prefix sum. Typi-
cally, however, parallel and sequential computations are interleaved. While Fast
Fourier Transform and Batcher merge represent highly parallel computations,
binary search is inherently sequential (there are other parallel search strate-
gies). Gaussian elimination represents a mixture; the computation consists of
a sequence of pivoting steps where each step can be applied in parallel. Thus

246 CHAPTER 8. PARALLEL RECURSION

parallel computations may have to be performed in a certain sequence and the
sequence may depend on the data values during a computation. More general
methods, as in [7], are then required.

The powerlist notation can be integrated into a language that supports se-
quential computation. In particular, this notation blends well with ML [38] and
LISP[37, 49]. A mixture of linear lists and powerlists can exploit the various
combinations of sequential and parallel computing. A powerlist consisting of lin-
ear lists as components admits of parallel processing in which each component
is processed sequentially. A linear list whose elements are powerlists suggests a
sequential computation where each step can be applied in parallel. Powerlists
of powerlists allow multidimensional parallel computations, whereas a linear list
of linear lists may represent a hierarchy of sequential computations.

